Machine learning approaches for thermal updraft prediction in wind solar tower systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Solar Wind with Machine Learning

We present a four-category classification algorithm for the solar wind, based on Gaussian Process. The four categories are the ones previously adopted in Xu and Borovsky [2015]: ejecta, coronal hole origin plasma, streamer belt origin plasma, and sector reversal origin plasma. The algorithm is trained and tested on a labeled portion of the OMNI dataset. It uses seven inputs: the solar wind spee...

متن کامل

Machine learning approaches for epitope prediction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER 1. GENERAL INTRODUCTION . . . . . . . . . . . . . . . . . .

متن کامل

Wind Power Prediction with Machine Learning

Better predictionmodels for the upcoming supply of renewable energy are important to decrease the need of controlling energy provided by conventional power plants. Especially for successful power grid integration of the highly volatile wind power production, a reliable forecast is crucial. In this chapter, we focus on shortterm wind power prediction and employ data from the National Renewable E...

متن کامل

Wind Power Prediction with Machine Learning Ensembles

For a sustainable integration of wind power into the electricity grid, precise and robust predictions are required. With increasing installed capacity and changing energy markets, there is a growing demand for short-term predictions. Machine learning methods can be used as a purely data-driven, spatio-temporal prediction model that yields better results than traditional physical models based on...

متن کامل

Machine Learning Approaches to siRNA Efficacy Prediction

OF THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Computer Science The University of New Mexico Albuquerque, New Mexico May, 2005 Machine Learning Approaches to siRNA Efficacy Prediction by Sahar Abubucker B.E., Madras University, 2000 M.S., Computer Science, University of New Mexico, 2005

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Renewable Energy

سال: 2021

ISSN: 0960-1481

DOI: 10.1016/j.renene.2021.06.033